Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(45): 13050-13059, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023500

RESUMO

Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H2SO4 or HNO3 in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere.

2.
Environ Sci Technol ; 57(42): 15956-15967, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842878

RESUMO

Organic aerosols (OA) have gained attention as a substantial component of atmospheric aerosols owing to their impact on atmospheric visibility, climate, and human health. Although oxygenated organic molecules (OOMs) are essential contributors to OA formation, the sources, transformations, and fates of the OOMs are not fully understood. Herein, anthropogenic OOMs (AOOMs), anthropogenic volatile organic compounds (AVOCs), and OA were concurrently measured in Xiamen, a coastal city in southeastern China. Our results show that the AOOMs exhibited a high nitrogen content (76%) and a low oxidation degree. Strong photochemical processes of aromatic VOCs were the predominant sources of AOOMs. Also, NOx concentrations and the occurrence of multigeneration OH radical oxidations were the critical factors that might influence the formation of AOOMs. Finally, the newly developed aerosol dynamic model's results show that more than 35% of the OA mass growth rate is attributed to the gas-particle partitioning of AOOMs. Further sensitivity testing demonstrates that the contribution of AOOMs to OA growth is significantly enhanced during high-particulate-concentration periods, especially under low-temperature conditions. This study emphasizes the vital role of photochemically produced AOOMs derived from AVOCs in OA growth in a coastal urban atmosphere.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Carvão Mineral , Atmosfera , Aerossóis/análise , China , Poluentes Atmosféricos/análise
3.
Environ Sci Technol ; 56(19): 13931-13944, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137236

RESUMO

Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4 production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.

4.
Environ Sci Atmos ; 1(6): 449-472, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34604756

RESUMO

Major atmospheric oxidants (OH, O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation. Although numerous studies have investigated the long-term trend of ozone in Europe, the trends of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station and has been validated by measurements in several projects. Here, we applied the SOSAA model for the years 2007-2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants OH and NO3, as well as H2SO4 at SMEAR II. The simulations were evaluated with observations from several shorter and longer campaigns at SMEAR II. Our results show that daily OH increased by 2.39% per year and NO3 decreased by 3.41% per year, with different trends of these oxidants during day and night. On the contrary, daytime sulfuric acid concentrations decreased by 2.78% per year, which correlated with the observed decreasing concentration of newly formed particles in the size range of 3-25 nm with 1.4% per year at SMEAR II during the years 1997-2012. Additionally, we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case a limited number of parameters are measured and no detailed model simulations are available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...